AI+ Data™

  • Core Concepts Covered: Data Science foundations, Python, Statistics, and Data Wrangling
  • Advanced Topics: Dive into Generative AI, Machine Learning, and Predictive Analytics
  • Capstone Application: Solve real-world problems like employee attrition with AI
  • Career Readiness: Develop skills for AI-driven data science roles with hands-on mentorship

¡Reserva ya!

    Incluye:

    Candidatos ideales para este curso:

    AI Data Scientist. Analyzes complex data to extract insights, builds predictive models, employs statistical methods, and communicates findings to influence decision-making.
    AI Machine Learning Engineer. Designs and develops machine learning systems, implements algorithms, optimizes data pipelines, and integrates models into scalable, production-ready applications.
    AI Engineer. Develops artificial intelligence solutions, programs neural networks, optimizes AI algorithms, ensures ethical AI deployment, and troubleshoots AI systems.
    AI Data Analyst. Interprets data, generates reports, identifies trends, supports business decisions with actionable insights, and utilizes visualization tools to present data.

    • Basic knowledge of computer science and statistics (beneficial but not mandatory).
    • Keen interest in data analysis.
    • Willingness to learn programming languages such as Python and R.

    Course Overview.

    1. Course Introduction Preview

    Module 1: Foundations of Data Science.

    1. 1.1 Introduction to Data Science
    2. 1.2 Data Science Life Cycle
    3. 1.3 Applications of Data Science

    Module 2: Foundations of Statistics.

    1. 2.1 Basic Concepts of Statistics
    2. 2.2 Probability Theory
    3. 2.3 Statistical Inference

    Module 3: Data Sources and Types.

    1. 3.1 Types of Data
    2. 3.2 Data Sources
    3. 3.3 Data Storage Technologies

    Module 4: Programming Skills for Data Science.

    1. 4.1 Introduction to Python for Data Science
    2. 4.2 Introduction to R for Data Science

    Module 5: Data Wrangling and Preprocessing.

    1. 5.1 Data Imputation Techniques
    2. 5.2 Handling Outliers and Data Transformation

    Module 6: Exploratory Data Analysis (EDA).

    1. 6.1 Introduction to EDA
    2. 6.2 Data Visualization

    Module 7: Generative AI Tools for Deriving Insights.

    1. 7.1 Introduction to Generative AI Tools
    2. 7.2 Applications of Generative AI

    Module 8: Machine Learning.

    1. 8.1 Introduction to Supervised Learning Algorithms
    2. 8.2 Introduction to Unsupervised Learning
    3. 8.3 Different Algorithms for Clustering
    4. 8.4 Association Rule Learning with Implementation

    Module 9: Advance Machine Learning.

    1. 9.1 Ensemble Learning Techniques
    2. 9.2 Dimensionality Reduction
    3. 9.3 Advanced Optimization Techniques

    Module 10: Data-Driven Decision-Making.

    1. 10.1 Introduction to Data-Driven Decision Making
    2. 10.2 Open Source Tools for Data-Driven Decision Making
    3. 10.3 Deriving Data-Driven Insights from Sales Dataset

    Module 11: Data Storytelling.

    1. 11.1 Understanding the Power of Data Storytelling
    2. 11.2 Identifying Use Cases and Business Relevance
    3. 11.3 Crafting Compelling Narratives
    4. 11.4 Visualizing Data for Impact

    Module 12: Capstone Project – Employee Attrition Prediction.

    1. 12.1 Project Introduction and Problem Statement
    2. 12.2 Data Collection and Preparation
    3. 12.3 Data Analysis and Modeling
    4. 12.4 Data Storytelling and Presentation

    Optional Module: AI Agents for Data Analysis.

    1. 1. Understanding AI Agents
    2. 2. Case Studies
    3. 3. Hands-On Practice with AI Agents

    Otros cursos que podrían interesarte

    Pearson VUE Authorized Test Center- The global leader in computer-based testing. 

    FlexTech es centro examinador autorizado de Pearson Vue
    Reserva tus examenes de cetificaciones con nosotros!

    • Horario del centro: De Martes a Jueves